headshot of Robert T. Knight

Research Expertise and Interest

cognitive neuroscience, language, physiology, memory, attention, psychology, working memory, neuropsychology, human prefrontal cortex, neural mechanisms of cognitive processing, sensory gating, sustained attention, ad novelty detection

Research Description

Robert T. Knight is a professor in the Department of Psychology and the Helen Wills Neuroscience Institute.  His laboratory studies the contribution of prefrontal cortex to human behavior. They use electrophysiological and behavioral techniques to study controls and neurological patients with frontal lobe damage in an effort to understand the neural mechanisms subserving cognitive processing in humans. The laboratory also records intracranial activity directly from the cortical surface (electrocorticogram; ECoG) and depth (stereoencephalography; sEEG) in neurosurgical patients with implanted electrodes to study the electrophysiology of network activity supporting goal-directed behavior in humans. The laboratory also uses this information for development of brain machine interfaces for motor and language prosthetic devices.

In the News

Where do our minds wander? Brain waves can point the way

Anyone who has tried and failed to meditate knows that our minds are rarely still. But where do they roam? New research led by UC Berkeley has come up with a way to track the flow of our internal thought processes and signal whether our minds are focused, fixated or wandering.

Brain noise contains unique signature of dream sleep

When we dream, our brains are filled with noisy electrical activity that looks nearly identical to that of the awake brain. But UC Berkeley researchers have pulled a signal out of the noise that uniquely defines dreaming, or REM sleep, potentially making it easier to monitor people with sleep disorders, as well as unconscious coma patients or those under anesthesia.

New helmet design can deal with sports’ twists and turns

As a neurologist, Robert Knight has seen what happens when the brain crashes around violently inside the skull. And he’s aware of the often tragic consequences. So, Knight invented a better helmet — one with more effective padding to dampen the effects of a direct hit, but more importantly, an innovative outer shell that rotates to absorb twisting forces that today’s helmets don’t protect against.

Six UC Berkeley faculty elected AAAS fellows

Six scientists are among the 396 newest fellows elected to the American Association for the Advancement of Science (AAAS) for “advancing science applications that are deemed scientifically or socially distinguished.”

Pop-outs: How the brain extracts meaning from noise

When you’re suddenly able to understand someone despite their thick accent, or finally make out the lyrics of a song, your brain appears to be re-tuning to recognize speech that was previously incomprehensible.

Study links honesty to prefrontal region of the brain

Are humans programmed to tell the truth? Not when lying is advantageous, says a new study led by Assistant Professor Ming Hsu at UC Berkeley’s Haas School of Business. The report ties honesty to a region of the brain that exerts control over automatic impulses.

UC Berkeley, UCSF join forces to advance frontier of brain repair

Researchers at UC Berkeley and UCSF have launched the joint Center for Neural Engineering and Prostheses to develop technology that can translate brain signals into movements controlling prosthetic limbs, circumventing damaged or missing neural circuits in people suffering from disabling conditions.

Our brains are wired so we can better hear ourselves speak, new study shows

Like the mute button on the TV remote control, our brains filter out unwanted noise so we can focus on what we’re listening to. But when it comes to following our own speech, a new brain study from UC Berkeley shows that instead of one homogenous mute button, we have a network of volume settings that can selectively silence and amplify the sounds we make and hear.

Phantom images stored in flexible network throughout brain

The ability to store phantom images in our brain in order to make visual comparisons is impaired by damage to the prefrontal cortex, but intact regions of the prefrontal cortex pick up the slack in less than a second. Damage to the basal ganglia, however, causes more widespread impairment of visual working memory. New studies by UC Berkeley neuroscientists show how the prefrontal cortex flexibly picks up new functions while retaining old.

Research restructuring leads to net reduction in jobs

In mid-July, Vice Chancellor for Research Graham R. Fleming announced that the dire budget circumstances facing the campus necessitated taking a hard look, as quickly as possible, at the structure of services and deployment of resources administered from his office.