Research Expertise and Interest
biomaterials, molecular and cellular bioengineering, stem cells, cancer biology, translational medicine
Research Description
Sanjay Kumar is the Chancellor's Professor and Director, California Institute for Quantitative Biosciences at UC Berkeley (QB3-Berkeley). The Kumar Lab research team seeks to understand and control biophysical communication between cells and their surroundings. A large portion of their work involves the integration of biomaterials science, single-cell technologies, and advanced imaging to dissect molecular mechanisms through which cells sense, process, generate, and respond to mechanical forces. In addition to investigating fundamental aspects of this problem, they are especially interested in applying their insights to control tumor and stem cell biology, particularly in the central nervous system. For example, they have developed materials to control neurogenesis and deliver stem cells to tissue, and they have created new technological platforms to model the invasion of brain tumors, which may in turn be used to discover new therapies.
QB3 was established in 2000 as a Governor Gray Davis Institute for Science and Innovation and consists of a central administration together with institutes on the campuses of UC Berkeley, UCSF, and UC Santa Cruz. QB3's goals are to fuel the California bioeconomy, support research and training in quantitative biosciences, and translate academic research into products and services that benefit society. QB3-Berkeley organizes and administers core research facilities, incubator space (QB3 Garage@Berkeley), and educational and career development programs. QB3-Berkeley also oversees and is based in Stanley Hall, a 285,000 sq. ft. multidisciplinary research and teaching building on the Berkeley campus.
In the News
Five Berkeley top scholars named AAAS fellows
Brown fat flexes its muscle to burn energy -- and calories
Making chicken feathers
Tracking Cancer’s Advance in 3D
Sanjay Kumar adapts bioengineering strategies for studies in 3D cell environments to reveal how and why cancer cells invade the way they do.
Scientists create new protein-based material with some nerve
UC Berkeley scientists have taken proteins from nerve cells and used them to create a “smart” material that is extremely sensitive to its environment. This marriage of materials science and biology could give birth to a flexible, sensitive coating that is easy and cheap to manufacture in large quantities.
Kumar and Murthy receive Keck Fund award
Bioengineering professors Sanjay Kumar and Niren Murthy have been granted a $500,000 research award from the W.M. Keck Foundation for their project, Single Tumor Cell Proteomics for Diagnosis and Prognosis.
Tumor cells move faster through tight spaces
Tight spaces have the counterintuitive effect of aiding the spread of tumor cells, according to a new study led by UC Berkeley bioengineers. The researchers developed a 3D model to study the biophysical environment factors influencing tumor invasion and found that narrow channels gave cells traction to help them move faster. The findings have implications for certain cancers, including malignant brain tumors, which tend to infiltrate most rapidly along tissue interfaces and confined spaces, such as blood vessels and nerve tracts.