Alanna Schepartz

Research Expertise and Interest

chemical biology, synthetic biology, organic chemistry, biophysics

Research Description

Alanna Schepartz is a Professor of Chemistry; the T.Z. and Irmgard Chu Distinguished Chair in Chemistry; Professor of Molecular and Cell Biology; and a Faculty Affiliate, California Institute for Quantitative Biosciences (QB3).  

Professor Schepartz's research group is interested in questions that span the chemistry-biology continuum. We seek to establish new knowledge about the chemistry of complex cellular processes and apply this knowledge to design or discover molecules–both small and large–with unique or useful properties. We apply the tools of organic synthesis, biochemistry, biophysics, and structural, molecular, and synthetic biology in our work. Current projects focus on (1) repurposing the ribosome to biosynthesize sequence-defined chemical polymers and polyketides; (2) exploring and improving novel tools for trafficking proteins to the cytosol and nucleus for therapeutic applications; (3) understanding the mechanism by which chemical information is transported through cellular membranes; and (4) developing new probes and fluorophores to image organelle dynamics at super-resolution for highly extended times and in multiple colors.

In the News

Berkeley awarded $20M to establish an NSF Center for Chemical Innovation

A team of institutions led by UC Berkeley has been awarded a $20 million research grant from the National Science Foundation to pursue breakthrough technologies towards new medicines and innovative materials. The effort brings together a team of chemists, biologists, engineers, and data scientists to tackle a “Holy Grail” problem in the chemical sciences: how to synthesize truly sequence-defined chemical polymers, oligomeric molecules possessing both a pre-determined, diverse sequence, and a defined length.