Michael Yartsev

Michael Yartsev

Title
Assistant Professor
Department
Dept of Bioengineering
Research Expertise and Interest
neuroscience, engineering
Research Description

Our lab seeks to understand the neural basis of complex spatial and acoustic behaviors in mammals. To do so, we use one of the most spatially and acoustically sophisticated mammals on our planet - the echolocating bat.  In the spatial domain, we take advantage of the bat's ability to elegantly navigate during high-speed flight and under varying levels of spatial complexity. In the acoustic domain, we use the bat's sonar (echolocation) and social communication signals to understand how these are learned and later used during natural behavior.  We further develop technologies for monitoring neural activity and optogenetic control in freely behaving and flying bats and apply those to our investigations of neural circuits. Taking this approach, we aim to uncover core principles of brain function that are general across mammals

In the News

October 21, 2021

Bat study reveals secrets of the social brain

Whether chatting with friends at a dinner party or managing a high-stakes meeting at work, communicating with others in a group requires a complex set of mental tasks. Our brains must track who is speaking and what is being said, as well as what our relationship to that person may be — because, after all, we probably give the opinion of our best friend more weight than that of a complete stranger. A study published today in the journal Science provides the first glimpse into how the brains of social mammals process these types of complex group interactions.
September 28, 2021

Reinventing the Wheel

Fruit bats aren’t the first words that comes to mind when you think of driverless cars.  But in their nightly forays for fruit and nectar, they routinely solve many of the engineering challenges that have stalled efforts to develop safe, reliable and efficient autonomous vehicles. Michael Yartsev describes the neurobiological principles his lab has uncovered and how the insights may provide a roadmap to the future.
July 8, 2021

A peek inside a flying bat’s brain uncovers clues to mammalian navigation

When driving up to a busy intersection, you probably pay more attention to where you will be in the near future than where you are at that moment. After all, knowing when you will arrive at the intersection — and whether you need to stop or slow down to avoid a collision with a passing car, pedestrian or cyclist — is usually much more important than knowing your current location. This ability to focus on where we will be in the near future — rather than where we are in the present — may be a key characteristic of the mammalian brain’s built-in navigation system, suggests a new study appearing online Thursday, July 8, in the journal Science.
June 20, 2019

Bats’ brains sync when they socialize

The phrase “we’re on the same wavelength” may be more than just a friendly saying: A new study by University of California, Berkeley, researchers shows that bats’ brain activity is literally in sync when bats engage in social behaviors like grooming, fighting or sniffing each other.

In the News

October 21, 2021

Bat study reveals secrets of the social brain

Whether chatting with friends at a dinner party or managing a high-stakes meeting at work, communicating with others in a group requires a complex set of mental tasks. Our brains must track who is speaking and what is being said, as well as what our relationship to that person may be — because, after all, we probably give the opinion of our best friend more weight than that of a complete stranger. A study published today in the journal Science provides the first glimpse into how the brains of social mammals process these types of complex group interactions.
September 28, 2021

Reinventing the Wheel

Fruit bats aren’t the first words that comes to mind when you think of driverless cars.  But in their nightly forays for fruit and nectar, they routinely solve many of the engineering challenges that have stalled efforts to develop safe, reliable and efficient autonomous vehicles. Michael Yartsev describes the neurobiological principles his lab has uncovered and how the insights may provide a roadmap to the future.
July 8, 2021

A peek inside a flying bat’s brain uncovers clues to mammalian navigation

When driving up to a busy intersection, you probably pay more attention to where you will be in the near future than where you are at that moment. After all, knowing when you will arrive at the intersection — and whether you need to stop or slow down to avoid a collision with a passing car, pedestrian or cyclist — is usually much more important than knowing your current location. This ability to focus on where we will be in the near future — rather than where we are in the present — may be a key characteristic of the mammalian brain’s built-in navigation system, suggests a new study appearing online Thursday, July 8, in the journal Science.
June 20, 2019

Bats’ brains sync when they socialize

The phrase “we’re on the same wavelength” may be more than just a friendly saying: A new study by University of California, Berkeley, researchers shows that bats’ brain activity is literally in sync when bats engage in social behaviors like grooming, fighting or sniffing each other.

Featured in the Media

Please note: The views and opinions expressed in these articles are those of the authors and do not necessarily reflect the official policy or positions of UC Berkeley.
July 8, 2021
Tatyana Woodall
More than a thousand species use echolocation, but after billions of years of evolution, bats' brains are especially well optimized for navigation. A new paper released today in Science suggests that as bats fly, special neurons known as place cells—located in their hippocampus, a part of the brain that controls memory—helps them process key navigational information about their position not only in the moment but in the past and future as well. Using a combination of wireless neural data loggers and a motion-tracking system made of 16 cameras, Nicholas Dotson, a project scientist at the Salk Institute and the lead author of the study and his coauthor Michael Yartsev, a professor of neurobiology and engineering at UC Berkeley, observed six Egyptian fruit bats in two experiments meant to record bursts of neural activity. For more on this, see our press release at Berkeley News.
Loading Class list ...
.