Anant Sahai

Research Expertise and Interest

machine learning, artificial intelligence, information theory, communications theory, wireless communication, cognitive radio, distributed control, spectrum sensing, spectrum sharing, spectrum policy, power consumption in communications systems

Research Description

Anant Sahai's areas of interest are artificial-intelligence, machine learning, communications, control, and wireless spectrum. Within AI/ML, he is particularly interested in how to get artificial agents to cooperate as well as general issues on the fundamental limits of learning, and how assumptions interact with inference procedures. In particular, he is very interested in the foundations of overparameterized systems as well as in-context learning.  He leads the "Data and Machine Learning" Working Group for SpectrumX, a new multi-university collaboration in the area of wireless spectrum. Within that, he is also interested in how to bring and adapt modern Data Engineering oriented approaches together with machine learning to engineering problems involving the real world, regulation, uncertainty, and economic incentives.

On the communications side, his interests are particularly in the areas of wireless and information theory. Within information theory, one of his areas of interest is in developing conceptual tools needed to understand the fundamentals of "quality of service"; beyond classical Shannon data rate. To that end, he is interested in distributed control systems as they provide well formed mathematical models that do not mesh with the classical notions from information theory. In addition, distributed control is a setting in which we can explore the role of implicit communication/signaling. He is also interested in how multi-scale heterogenous wireless systems can coexist peacefully within the context of cognitive radios. This is the general problem of spectrum sharing. Besides being an interesting case of distributed control, this brings legal and economic concerns together with machine learning, big data, and communications in a non-trivial way.

Loading Class list ...