2022 Innovators

Penny Wieser photo

Penny Wieser
Assistant Professor, Earth and Planetary Science

Title: Volcanology: Reconstructing Magma Storage Depths Using Fluid Inclusions

Abstract: Constraining the depths of magma storage feeding volcanic eruptions is vital to inform volcano monitoring and civil response, as well as to gain a deeper understanding of the formation of economical metal deposits and the evolution of the Earth’s crust. However, techniques using geophysical signals (e.g. earthquakes, ground deformation) cannot be used at many potentially hazardous volcanoes which show little activity at present, or have limited monitoring networks. More widely applicable petrological methods examining the chemical characteristics of previously erupted lavas and crystals are associated with large systematic and random errors on calculated depths (~50-400%). Recent advances in confocal Raman spectroscopy permit precise and accurate measurements of the densities of CO2-rich fluids trapped within growing crystals (termed fluid inclusions: FIs). The simple physical relationship between the density and pressure of a CO2-rich fluid means that distributions of FI densities can be converted into magma storage pressures with very small errors (~5-10%), and then magma storage depths using known crustal density profiles. We will investigate the utility of FIs by performing comparisons to more established methods to determine magma storage depths in several historic eruptions. Having optimized the workflow and identified any pitfalls, we will use FIs to investigate explosive volcanism in Hawai’i, which presents a significant hazard. Finally, we will work alongside the Hawaiian Volcano Observatory to determine just how quickly we can obtain estimates of magma storage depths during the next large eruptive crisis, and how this information can be used to inform decision making to mitigate societal risk.

Profile: Penny Wieser is an Assistant Professor in Earth and Planetary Science. She studies lavas, crystals, gases and aerosols erupted at active volcanoes to improve our understanding of magma storage, eruption dynamics and volcanic hazards. So far, her research has primarily focused on the Andean Southern Volcanic Zone (Chile), Kīlauea Volcano (HI), and the Cascade arc (USA), with collaborative projects involving recent eruptions in Iceland and La Palma. She is also passionate about the development of open-source packages in Python to make volcanology more reproducible and accessible, and enjoys running workshops showcasing the power of Python and building proficiency. Her group at Berkeley use scanning electron microscopy (EDS-WDS-EBSD) and Raman spectroscopy to measure the chemistry and structure of volcanic products, integrating these measurements into quantitative models of magma evolution. Prior to starting at Berkeley in 2022, Wieser received her Undergraduate and Masters degree from the University of Oxford (2017), her PhD from the University of Cambridge (2020), and conducted postdoctoral work at Oregon State University (2021-2022).


Ziyang Zhang PhotoZiyang Zhang 
Assistant Professor, Chemistry & Chemical Biology 

Title: Chemical Modulation of Antigen Presentation to T Cells

Abstract: Our T cells are powerful defenders against infections and cancer. However, sometimes they fail to clear tumors, and sometimes they mistakenly attack healthy cells. T cells rely on a delicate process called antigen presentation to see their friends and foes: recognition of peptide antigens presented by cancer cells is an important step in antitumor immunity, and inappropriate recognition of self-antigens underlies the pathology of autoimmune disorders. Despite its importance, there are very few tools for the investigation or therapeutic intervention of this process. We propose to use organic chemistry, chemical proteomics and functional genomics to discover new chemical tools to fine tune the adaptive immune response. These chemical tools will expand our ability to study antigen processing and enable a new therapeutic approach for cancer and autoimmune diseases.

Profile: Ziyang joined the Department of Chemistry at UC Berkeley as an Assistant Professor in 2022. His lab creates chemical tools to tweak our immune system and enable new therapeutic mechanisms for cancer and autoimmune diseases. Ziyang was born in Taizhou, China and received his B.Sc. in Chemistry from Peking University. After moving to the U.S., he received his PhD training with Prof. Andrew G. Myers at Harvard University as an HHMI International Predoctoral Fellow, where he developed a platform for the synthesis of new macrolide antibiotics. He continued his training as Damon Runyon Postdoctoral Fellow in the lab of Prof. Kevan Shokat at UCSF, where he devised chemical strategies for the brain-specific inhibition of kinases and the mutant-specific targeting of KRAS-driven cancer.  He is a recipient of C&EN News 2021 Talented 12 Award.