

Efficient Supply-Following Loads: The Key to a Cooperative Grid

David E. Culler University of California, Berkeley

The Philomathia Foundation Symposium at Berkeley: Pathways to a Sustainable Energy Future

> "Energy permits things to exist; information, to behave purposefully." W. Ware, 1997

Quads

Moore's Law

A Computer Scientist meets the Energy Problem

A Computer Scientist meets the Energy Problem

A Computer Scientist meets the Energy Problem

The Industrial Age Grid

Baseline + Dispatchable Tiers

Oblivious Loads

Towards an "Aware" Energy Infrastructure

Baseline + Dispatchable Tiers

Oblivious Loads

Cal ISO Daily Peak Loads January 1, 2000 - December 31, 2000

Load-following Supply (?)

Growing proportion of renewables leads to higher price volatility. October 2008 to March 2010: >90 hours with negative prices; highest price reached: +€500/MWh, lowest -€500/MWh

Energy Price

Where to Start?

Buildings

- 72% of electrical consumption (US),
- 40-50% of total consumption,
- 42% of GHG footprint
- US commercial building consumption doubled 1980-2000, 1.5x more by 2025 [NREL]
- Where Coal is used
- Prime target of opportunity for renewable supplies

Start from Scratch?

• No!

Internet Exists

Intelligent Energy Network as Overlay on Both

Lessons from the Internet

- Measure everywhere, continuously adapt
- Intelligence at the end-points, simple core
- Horizontal Layering, not Vertical Integration
- Universal "narrow waist" IP
- \Rightarrow Absorb new technology
- \Rightarrow Enable new applications
- \Rightarrow Innovate in the Overlay
- \Rightarrow Web: simple, open, machine readable formats

Innovate in a Virtual Private Grid

2020 IT Carbon Footprint

IT footprints Emissions by sub-sector, 2020

2007 Worldwide IT carbon footprint: $2\% = 830 \text{ m tons CO}_{2}$ **Comparable to the** global aviation industry

Expected to grow to 4% by 2020

360m tons CO₂

260m tons CO₂

Total emissions: 1.43bn tonnes CO₂ equivalent

Engineering 101

Design, Plan, Size, and Test at Full Load

Performance measured at full Load

- Add headroom and safety margin
- Operate at Partial Load

A Prime IT Example

"The Case for Energy-Proportional Computing," Luiz André Barroso, Urs Hölzle, *IEEE Computer* December 2007 – study of 5,000 servers

24

25

26

- Measure of scaling down to Partial Load
- Do Nothing Well !

Power-Proportional Buildings ?

Stanley Hall: Office + BioScience - 13 NMRs

Min = 72% of Max

Power-Proportional Buildings ?

Koshland Hall: Office +

Min = 69% of Max

Along the way ...

Keeping an Eye on the Prize

- Monitor Based Commissioning
 - Eliminate simultaneous heat/cool
 - AC91 on schedule

Power Proportional Buildings?

Part-time, Part-space, Natural venting and light

Stages of Energy Effectiveness

- Waste Not
 - Do Nothing Well !!!
- Power Proportionality
 - Peak Performance : Power => Safety
 - Optimize Partial Load from nothing to peakl
- Sculpting
 - Identify the energy *slack* and utilize it
- Negotiated Grid / Load / Human Interaction – Plan, Forecast, Negotiate, Manage

Supply-Following Loads

Supply-Following Computational Loads

ENERGY SAVINGS FROM EXTENDED AIR TEMPERATURE SETPOINTS AND REDUCTIONS IN ROOM AIR MIXING

Tyler Hoyt, Kwang Ho Lee, Hui Zhang, Edward Arens, TomWebster

Cyber / Physical Buildings

Narrow Waist?

In a Cooperative Grid

LoCal

- NSF, CEC, DOE, industry, collaborators
- UCB Facilities Services
- Cory/Soda Building Mgr Scott McNally