2020/21 Recipient

Grace Gu, UC Berkeley
Mechanical Engineering

Title: Wound closing and healing devices: Design, computation, and experimental validation

Grace Gu PictureInjuries to the human body are a common occurrence, from accidental paper cuts to complex surgeries. These cutaneous and sub-cutaneous wounds oftentimes require wound care to facilitate the healing of the injured tissue, especially in chronic injuries and surgical procedures. Current methods and materials designed for wound closure present an invasive approach to seal wounds and often require skilled practitioners for a successful application. Invasive methods and incorrect application of these materials can lead to delayed healing, cosmetic deformities upon healing, and lead to prolonged inflammation.

In this research, Gu Lab from UC Berkeley together with Desai Lab from UCSF will look to design, optimize, and fabricate novel non-invasive wound closing materials through a combined computational and experimental approach for stimulated wound closure using temperature and humidity. The proposed approach will use materials adhered to the surface of the skin that will change shape when stimulated and automatically close the wound during the process. The combined expertise in biomaterials, computational mechanics, and additive manufacturing between the two labs is well-suited to tackle the challenges of developing new materials for medical applications. Understanding these material design parameters for wound sealing and healing can guide the design of stimuli-responsive materials for other uses, such as self-actuating components for robotics and personalized, self-healing textiles and body armor applications.