2017 Innovators

Polina LishkoPolina Lishko

Molecular and Cell Biology

Title: Molecular basis of the age-related reproductive decline in females

Abstract: The age-related inability of the egg to develop into a healthy embryo, an oopause, is linked to the egg mitochondrial dysfunction. Mitochondria are maternally inherited organelles that provide cells with energy and play a central role in cellular longevity. Thus, mitochondrial dysfunction is an important factor contributing to unexplained female infertility and repetitive miscarriages. As the female organism ages, so do the mitochondria of the egg. Interestingly, the mitochondrial transfer from a “young” egg into an “aged” leads to rejuvenation of the latter. However, the biological explanation for this phenomenon is far from complete, because the molecular mechanisms that control ageing of egg mitochondria remain unexplored. Our lab is interested in understanding how mitochondria in the eggs of young animals differ from those of aged females with the specific emphasis on mitochondrial calcium uptake and its regulation. Our goal is to determine what exactly is required to reverse the process of ageing, restore a healthy mitochondrial function, and promote embryo survival.

Profile: Polina V. Lishko studies the cellular mechanisms of mammalian fertilization. Her team uses innovative technologies to study how tiny electrical currents that are produced in response to flow of ions across cellular membranes regulate fertility potential of the egg and sperm cells. By combining biophysics, biochemistry and cell biology approaches, her team works on the development of nonhormonal unisex contraceptives, as well as investigates the molecular mechanism of mammalian egg longevity. In addition to being a Pew Scholar, Lishko has received the Hellman Faculty Fund, the Sloan fellowship, Margaret Oakley Dayhoff Award in Biophysics and Matthew P. Hardy Young Andrologist award from American Society of Andrology. She received a Ph.D. in biophysics from the Bogomoletz Institute of Physiology at the National Academy of Sciences of Ukraine. As a postdoctoral researcher at Harvard Medical School, Lishko studied molecular mechanisms of vision, and later worked on the physiology of temperature and pain sensors. From 2006 to 2011, Dr. Lishko was an instructor at the University of California, San Francisco, where she studied the regulation of sperm physiology by ion channels. In 2012, she joined the faculty of the University of California, Berkeley as an assistant professor of molecular and cell biology. Learn More.


Thomas MaimoneThomas Maimone


Title: Synthetic Antibiotic Drug Discovery Platforms Inspired by Natural Products

Abstract: The rise of pathogenic bacteria resistant to known antibiotics is a growing concern with “potentially catastrophic consequences” as recently noted by The Center for Disease Control. Worldwide, over 700,000 deaths are attributed to bacterial infections annually and hospital acquired bacterial infections incur an estimated direct health care cost of up to $40 billion annually. Microbial evolution, antibiotic misuse, and a significant abandonment of antibiotic drug discovery programs all greatly threaten to return our world to the pre-antibiotic era.Complex natural products and their derivatives remain at the heart of antimicrobial drug discovery, yet the pace at which novel antibiotics, especially those with unique mechanisms of action, are discovered and optimized has greatly declined over the last 50 years. Using natural products as inspiration, and a bottom-up synthetic chemistry approach, we will pave the way forward to new, structurally unprecedented antimicrobial agents for the potential treatment of human bacterial infections

Profile: Tom Maimone obtained his B.S. degree in chemistry from UC-Berkeley in 2004. From 2005-2009 he was a Ph.D. student in the Baran Research group at The Scripps Research Institute wherein he completed total syntheses of the alkaloids hapalindole U and ambiguine H, and was part of the team that completed the first laboratory synthesis of the complex diterpene vinigrol. From 2009-2012, Tom was an NIH Postdoctoral Fellow in the laboratory of Prof. Steve Buchwald at MIT researching Palladium-catalyzed methods for carbon-oxygen and carbon-fluorine bond formation. In July 2012, Tom returned to UC-Berkeley where he is an assistant professor in the department of chemistry. His research group focuses on streamlining the synthesis of complex natural products with important biological properties, developing new synthetic transformations, and undertaking medicinal chemistry on complex natural-product inspired scaffolds. He is the recipient of an Alfred P. Sloan Fellowship, UC-Berkeley Hellman Fellowship, Cottrell Scholar award, NSF Career Award, the 2016 Novartis Early Career Award in Organic Chemistry, and the 2017 Bristol-Myers Squibb Unrestricted Grant in Synthetic Chemistry. Learn More.


Daniel StolperDaniel Stolper

Earth and Planetary Science

Title: Earth’s climatic thermostat: chemical weathering of oceanic crust as a key controller of Earth’s surface temperatures?

Abstract: Understanding what controls Earth’s climate on geological (million year) timescales and how the Earth has remained habitable over the past 4.5 billion years is a key area of research in Earth and Planetary Science. Earth’s climate is generally thought to be stabilized on geological timescales through weathering of terrestrial rocks, which promotes the conversion of CO2 into carbonate minerals — CO2 is a greenhouse gas that increases surface temperatures. Thus, removing it from the atmosphere provides a means to lower global temperatures. It has recently been proposed instead that submarine weathering of oceanic crust regulates climate. Specifically warmer climates lead to warmer oceans and thus warmer fluids circulating through oceanic crust. As weathering rates increase with temperature, these warmer fluids increase oceanic crust weathering rates, converting more CO2 to carbonate minerals (stored in oceanic crust), lowering atmospheric CO2 levels and stabilizing climate. If correct, this changes the paradigm of how climate has been regulated on Earth’s surface over geological time as well as potentially on exoplanets. However, this idea remains untested. Here, I propose to test it by measuring carbonate formation temperatures formed in oceanic crust from the past 170 million years using new isotopic techniques. Mean global temperatures are known to have cooled by ~15-20°C over this period. If carbonate formation in oceanic crust responds to ocean temperatures, then measured formation temperatures should cool over this time period as well.

Profile: Daniel Stolper joined the Department of Earth and Planetary Science as an assistant professor in 2017. His research focuses on scientific problems related to the rock record, microbiology, and biogeochemical cycles in the past and present. These include developing new records of the history of atmospheric oxygen concentrations, paleoclimate reconstructions of past ocean temperatures, and studying feedbacks between the solid and surface earth. Daniel received his Ph.D. in geobiology from Caltech in 2014 and then spent 2 years as a NOAA Global and Climate Change postdoctoral fellow at Princeton before coming to Berkeley. Daniel’s laboratory is focused on mass spectrometric measurements of molecules with multiple rare, stable isotopes (known as "clumped” isotope geochemistry) from both environmental and experimental samples. He is also an affiliate scientist at the Lawrence Berkeley National Laboratory in the Earth and Environmental Sciences Area. Learn More.