Postdoctoral Fellowship

Current and Former Fellows

didier devauxDidier Devaux, Ph.D.
2016-2017 Philomathia Postdoctoral Fellow

Didier received an engineering degree in electrochemistry from Grenoble Institute of Technology in 2006. He then worked in the fuel cell domain, first at Arkema Inc. (USA) on electrochemical device characterizations followed by a period at the Clean Energy Research Centre (Yamanashi University, Japan) studying biofuel electrocatalysis. Then, he received a Ph.D. at Aix-Marseille University (France, 2012) in materials science on polymer electrolyte for lithium batteries before joining in 2013 the Balsara group at in the Department of Chemical and Biomolecular Engineering at UC Berkeley. In 2016 Didier was awarded a Philomathia Postdoctoral Fellowship to continue studies with Professor Nitash Balsara. His work focuses on i) lithium battery characterization and analysis of their failure modes by synchrotron X-ray microtomography and ii) characterization and optimization of a new class of nonflammable liquid polymer electrolyte based on perfluoropolyether for lithium battery application.

Michael McGuirkC. Michael McGuirk, Ph.D.
2016-2017 Philomathia Postdoctoral Fellow

Michael obtained his Ph.D. in chemistry from Northwestern University under the supervision of Prof. Chad Mirkin, where he focused on the development of bio-inspired strategies for the reversible regulation of function in stimuli-responsive supramolecular coordination constructs.  Michael currently works for Prof. Jeff Long in the Department of Chemistry, focusing on the selective sequestration of carbon dioxide from exhaust waste streams and the realization of chemical approaches to transforming the sequestered gas into reusable hydrocarbon-based fuels. Although long-term approaches to curbing climate change broadly focus on renewable energy sources, until their full implementation there exists a great impetus to minimize the deleterious effects of burning fossil fuels, namely the production of the greenhouse gas carbon dioxide. Therefore, using a family of strategically designed highly porous metal−organic linker-based frameworks, Michael aims to develop energy-efficient strategies for the selective removal of carbon dioxide from large-scale point sources, such as coal-burning plants. Additionally, he aims to realize direct strategies to convert this captured waste into energy-rich fuels, such as methane and ethanol. 

Lina QinLina Qin, Ph.D.
2016-2017 Philomathia Postdoctoral Fellow

Lina Qin is a Philomathia Postdoctoral Fellow in the Energy Biosciences Institute. She obtained her doctorate in Biochemistry and Molecular Biology from Institute of Microbiology, Chinese Academy of Sciences. Her doctoral dissertation research focused on the synthesis and secretion mechanisms of the cellulase cellobiohydrolase I (CBH1) in Trichoderma reesei and development of T. reesei as a highly efficient expression and protein production host. 

Lina currently works with Professor N. Louise Glass on a project using system biology strategies to define the mechanism of plant cell wall deconstruction by the model filamentous fungus Neurospora crassa. She is currently focusing on deciphering the regulatory interaction between the SREBP pathway and the protein trafficking machinery based on a series of hyper-secretion mutants in which SREBP pathway is defective. Understanding the mechanism underlying the hyper-secretion phenotype will contribute to rationally engineering lignocellulolytic filamentous fungi to more efficiently secrete enzymes and proteins, reducing the expense in production of biofuels and specialty chemicals from lignocellulosic material.

Nadav SorekNadav Sorek, Ph.D.
2016-2017 Philomathia Postdoctoral Fellow

Nadav obtained his doctorate in Plant Biology at Tel Aviv University, where he focused on protein lipid modifications and their importance for protein targeting. Nadav currently works with Professor Chris Somerville on understanding the basic mechanisms of plant cell wall biosynthesis. Because plant cell walls are indispensable to plant growth and development and are very structurally complex, it has been challenging to understand how their chemical composition contributes to function, and the degree to which variation in composition is compatible with normal growth and development. By screening for genetic suppressors of mutations in the cobra gene of Arabidopsis, and cloning the corresponding genes,  he has identified a family of novel proteins involved in the synthesis and organization of cell wall polymers and is studying how these proteins contribute to cell wall synthesis and function.

Trevor YeatsTrevor Yeats, Ph.D.
2015-2016 Philomathia Postdoctoral Fellow

Trevor is a Philomathia Postdoctoral Fellow at the Energy Biosciences Institute. He obtained his doctorate in Plant Biology at Cornell, where he focused on the biosynthesis of cutin, the major biopolymer constituent of the plant cuticle.

Trevor currently works with Professor Chris Somerville on the molecular machinery of cellulose biosynthesis. The controlled deposition and rearrangement of cellulose microfibrils defines the extent and direction of cell expansion and thus plant form from the cellular to organismal level. As the most abundant component of terrestrial biomass, cellulose is the most widely used renewable biomaterial, and is the main component of animal forage. The major industrial uses are paper, textiles (eg., cotton), and lumber. Cellulose is also envisioned as a renewable feedstock for liquid biofuels. Ultimately, a deeper understanding of cellulose synthesis and biomass structure will be essential in optimizing our utilization of these resources.

philomathiaTamara Vellosillo Armengol, Ph.D.
2014-2015 Philomathia Postdoctoral Fellow

Tamara received her Ph.D. from The Universidad Autónoma de Madrid.  Her dissertation research was concerned with Functional analysis of oxylipins, a family of lipid derivatives implicated in defense processes against pathogens and as signaling molecules in plant development. From 2014-15 she was a Philomathia Fellow studying plant cell wall synthesis with Professor Chris Somerville. She discovered and characterized a novel protein involved in vesicle trafficking of cellulose synthase complexes to the plasma membrane. Genetic studies showed that the protein is necessary for normal cellulose biosynthesis and building the complex structure of cell wall. She is currently a research scientist in the Carnegie Institution for Science at Stanford University.

pgundaPadma Gunda, Ph.D.
2012-2014 Philomathia Postdoctoral Fellow

Dr. Gunda was a Philomathia Postdoctoral Fellow at the Energy Biosciences Institute at the University of California, Berkeley. She obtained her doctorate in Molecular & Cell Biology at UC Berkeley, and pursued her undergraduate studies in Mathematics and Biology at the Massachusetts Institute of Technology.

Dr. Gunda's Ph.D. thesis research has focused on plant biomass degradation by fungal enzymes, including the biophysical characterization of cellulases during hydrolysis, and the regulation of degradative enzyme production. As a Philomathia fellow she investigated the impact of advanced biofuels on water use, assessing the environmental and socioeconomic impacts during large-scale production and conversion of plant biomass to liquid fuel.

HLHailiang Wang, Ph.D.
2012-2014 Philomathia Postdoctoral Fellow

Dr. Wang was a Philomathia Postdoctoral Fellow in the Department of Chemistry. He received his Ph.D. degree in physical chemistry from Stanford University in 2012. His Ph.D. research was focused on development of inorganic/carbon hybrid materials for electrochemical energy storage and conversion.

Dr. Wang was a Philomathia Postdoctoral Fellow with Professor Gabor A. Somorjai on surface chemistry and catalysis of alcohol oxidation reactions in both gas and liquid phases. Controlled synthesis, reaction studies and in situ characterizations were combined to explore the catalytic performance, study the reconstruction of the catalysts under reaction conditions, and understand the chemical processes at solid/gas and solid/liquid interfaces.

He is currently on the faculty at Yale University, Department of Chemistry.

NoriegaRodrigo Noriega, Ph.D.
2012-2014 Philomathia Postdoctoral Fellow

Dr. Noriega received his Ph.D. in Applied Physics from Stanford University, where he focused on combining advanced X-ray characterization tools with computer modeling and optical and electrical measurements to study the connection between microstructure and electronic properties of organic semiconductors, especially polymers.

As a Philomathia Fellow at UC Berkeley, Dr. Noriega studied with Professor Naomi Ginsberg to use the spatial capabilities of super-resolution microscopy and the time resolution of ultrafast laser spectroscopy to study energy flow in tunable biomimetic light harvesters. His goal has been to discover the fundamental mechanisms behind efficient long-range energy transfer as a step towards replicating natural photosynthetic processes in artificial systems with improved performance.

solomonSolomon A. Asfaw, Ph.D.
2011-2013 Philomathia Postdoctoral Fellow

Dr. Solomon Abebe Asfaw received his undergraduate degree in Physics from Bahir Dar University, Bahir Dar, Ethiopia; an M.Sc. degree in Physics from the Norwegian University of Science and Technology, Trondheim, Norway; a second M.Sc. and Ph.D. degree specializing in energy system analysis from Ben-Gurion University of the Negev, Sede Boqer, Israel.

At UC Berkeley Dr. Asfaw worked with Professor Dan Kammen on a research project to help improve access to electricity in East Africa.  The research points to limits of current planning models used for this region including (a) dependence on the largely suppressed historical demand as a proper indication of future demand in these countries (b) reliance on centralized generation and direct grid connection as means of electrification (c) emphasis on conventional generating resource types in power system planning studies (d) low consideration to the impact of national and regional electricity access policy (e) reliance on low spatial and temporal resolution data. He is currently the Senior Energy Officer at the African Development Bank, Ethiopia Country Office.

shengSheng Shen, Ph.D.
2011 Philomathia Postdoctoral Fellow

Sheng Shen was a postdoctoral fellow in mechanical engineering with professor Xiang Zhang. Dr Shen received his Ph.D. in mechanical engineering at MIT in 2010. In 2011 Dr. Sheng accepted a faculty position at Carnegie Mellon University.

At UC Berkeley, Dr. Shen explored solar energy as one of the most promising sources to meet the world’s growing energy demand. Solar photovoltaic systems can convert directly photons to electrical power, but the main limitations with present solar cells are their high material cost and low conversion efficiencies. Another attractive solution to the energy problem is to harness heat sources such as geothermal heat, solar heat and waste heat dissipated in energy conversion processes. Thermoelectric and thermophotovoltaic systems are both capable of directly converting heat into electricity, but again, the main barrier is their low efficiency. With many advances in nanostructured materials and nanoscale designs, it is clear that nanoscale engineering will play an important role in resolving these issues for solar and thermal energy conversion. Full Research Outline (PDF)