Seeing in Super-Resolution
Drawn to Superconducting Magnets
Getting the Lead Out of Drinking Water
Microbatteries that Make Sense
Biowalls to Spare the Air
Big Squeeze: Highly sensitive NV-DAC sensor stands up to enormous pressure
Silencing the Silencer: a new strategy to fight cancer
Oscillator Ising Machines Take Quantum Computation for a Classical Spin
EarEEG – Earbuds that read your mind
Light Shows the Way to Build “Smart” Infrastructure
A New Test Can See -- Almost Literally -- Infectious Bacteria
Miniature Sensors Can Detect Potential Dangers of CO2
Mining with Microbe “Animal Magnetism”
A Nano Strategy Overcomes Barriers to Plant Genetic Engineering
AI-powered Berkeley robot among Popular Science’s ‘Best of What’s New'
Seven new Bakar Fellows already are making an impact
New chip could lead to cheaper and better medical imaging devices and self-driving cars
Largest, fastest array of microscopic ‘traffic cops’ for optical communications
Meet Blue, the low-cost, human-friendly robot designed for AI
Gene Therapy gets a Boost
Highlighting Disease by Making the Body Transparent
Beyond Hormonal Birth Control
Literally Switching Strategies to Handle the Internet Data Flood
Five innovators join the ranks of the Bakar Fellows
Urban Resilience: Hiding in Plain Sight
CRISPR-EZ: Improving on a Good Thing
Ramping up Production of Vital Industrial Products
Medical Exams: There’s an App for That
Smart Materials: Getting the Sun to Pull Down the Shade
Mechanical Engineering To Aid Back Surgery
Security for Data Analytics - Gaining a Grip on the Two-Edged Sword
Computer Vision to Protect Patients — and Budgets
“Data for Social Good”: A New Strategy to Strengthen Citizenship
A “VAST” Step Forward in Cyber Security
Engineering to Restore Power to the People
Physiological Changes Tracked Moment to Moment
Trading in the Scalpel for a Sharper Blade
“Editing” New Metamaterials Brings Light Into Focus
Aiding Cells’ Strategy to Survive
New Bakar Fellows director sees Berkeley’s entrepreneurial spirit in faculty
Translating Genes’ Instructions
Sackler Sabbatical Exchange recipient Hiten Madhani studies how genome cutting machines in cells, called spliceosomes, are able to pluck genes away from other sequences of “letters” in strands of RNA.
Copper: A new player in health and disease
Chris Chang, who is part of the Sackler Sabbatical Exchange Program, carries out experiments to find proteins that bind to copper and may influence the storage and burning of fat.
An Energy Strategy that Can Take the Heat
Water and energy are tightly linked in the 21st century. Per Peterson’s research seeks to develop water-saving ways of cooling energy plants, both nuclear and solar.
Hazards and opportunities in the pipeline
Environmental engineer David Sedlak explores the serious water treatment, supply and security challenges we face, and proposes how to meet them.
The search for smarter energy and water strategies
Ashok Gadgil is refining an affordable water treatment technology to produce fresh drinking water from brackish water, one of many projects supported by CERC-WET.
“Deep Learning”: A Giant Step for Robots
Bakar Fellow Pieter Abbeel studies deep learning in robots. The robot BRETT (Berkeley Robot for Elimination of Tedious Tasks) has mastered a range of skills, including folding laundry, knot-tying, and basic assembly.
A New Recipe for Construction
Bakar Fellow Ronald Rael is advancing a type of 3-D printing that could add more beauty, variety and sustainability to building designs.
How Many Lasers can You Fit into a Shoebox?
Bakar Fellow Holger Müller is redesigning an instrument known as an atom interferometer, capable of making extremely precise measurements of distance and gravity.
Savvy Software Lightens MRI Burden
The Bakar Fellows Program supports Michael Lustig’s collaborations with clinicians and industry to speed adoption of the new MRI imaging strategies.
Super-Resolution Microscopy in “Living Color”
Bakar Fellow Ke Xu’s imaging technology allows researchers to distinguish between interacting proteins with exceptional color and image resolutions.
Big Thinking About Big Data
To Michael Jordan, the smart way to extract and analyze key information embedded in mountains of “Big Data” is to ignore most of it. Instead, zero in on collections of small amounts of data.
Seeing Through the Big Data Fog
Joe Hellerstein and his students developed a new programming model for distributed computing which MIT Technology Review named one of the 10 technologies “most likely to change our world”.
The AMP Lab Stands Up to Big Data
The AMP Lab, launched in 2011 by Michael Franklin and colleagues in computer science, has already had an outsized impact on industry.
Seeking Data Wisdom
Bin Yu’s statistical strategies work hand in hand with intense computation to penetrate storms of data.
Refining Persuasion Experiments — from Vaccines to Voting
Jasjeet Sekhon, a Signatures Innovation Fellow, has developed statistical approaches and new algorithms to provide simpler and much cheaper ways to assess the effectiveness of persuasion strategies.
Urban Infrastructure - Making Cities Smarter
Alexei Pozdnoukhov, a Signatures Innovation Fellow, leads research to use cellular data to aid traffic planning and operations. Fully developed, the technology could aid both traffic control and planning to keep pace with changes in transportation habits.
Small Salmon, Big Threat
Drought and the growing water demands of agriculture and a changing climate are creating a “knife edge” of survival for young salmon and steelhead, says UC Berkeley fish ecologist Stephanie Carlson. She is working to determine minimum water levels needed to sustain the fish.
How To Grow Back The Back - Engineered Cartilage Surfaces
Researcher Grace O’Connell, an assistant professor of mechanical engineering at UC Berkeley, is advancing ways to grow human disc tissue — the spongy, protective material between vertebrae — and other engineered cartilage surfaces in a lab.
Putting Energy Savings Programs to the Test
Philomathia Innovation Seed Fund recipients Catherine Wolfram and Meredith Fowlie carried out a rigorous study that found surprisingly low savings relative to costs in part of a nationwide effort to improve home energy-efficiency.
Taking on the Biggest Challenge
Paul Wright is the first director of the Berkeley Energy and Climate Institute (BECI) at UC Berkeley.
Power to the People
Philomathia Innovation Seed Fund recipient Eric Brewer works with tech savvy students in electrical engineering and computer science, urban planning, business, and economics to help developing countries gain access to affordable energy.
The Economics of Change
Philomathia Innovation Seed Fund recipient Edward Miguel applies the tools of economics to such social issues as access to affordable energy and the possible links between climate and conflict.
The Adolescent Brain Grows Up
Neuroscientist Linda Wilbrecht can observe “rewiring” in the living brain using an imaging instrument called a twophoton laser scanning microscope, which has a resolution better than 1/10,000 of an inch.
Forecasting Change, Welcome or Not
Plant ecologist David Ackerly has calculated that some animals and plants would need to migrate as much as four miles a year to track their preferred temperature in a rapidly warming climate.
Seeing Through Alzheimer’s Disease
If early intervention is key, then so is the ability to detect even the slightest sign of neurological damage. The William Jagust Lab is using statistical and computational approaches to refine PET scan sensitivity to identify a possible Alzheimer precursor.
“Intelligent Design” Can It Deliver?
Rather than trying to quiet the body’s defenses against viruses, David Schaffer has favored a kind of intelligent design approach to modify the virus. Known as directed evolution, the strategy uses genetic engineering to find variations in the virus that will allow it to effectively deliver drugs to target cells.
Diagnostic Tools: A Calculated Risk
Shawn Shadden integrates diagnostic imaging with computational modeling to better diagnose stroke severity in patients.
The Invisible Comes to Light
Laura Waller is working on computational imaging methods for quantitative phase microscopy, which enables one to map the shape and/or density of invisible samples in a non-invasive way. Her group is developing simple experimental architectures and efficient post-processing algorithms for phase recovery, applied in a variety of scientific and industrial settings.
Cancer’s Disposal System: Target for a Cure?
Andreas Martin has developed novel systems and strategies to screen for compounds that selectively inhibit protein turnover in the cell and may lead to new drugs against cancer.
Greener Blue Jeans
John Dueber is working to employ metabolite protecting groups for a sustainable indigo dyeing process. The new technology has the potential to transform the Jeans (and related textile) dyeing industry into a "green business" using dye processes that would comply with modern regulations ensuring environmental safeguards.
Welcome to the World of Wearable Electronics
Ana Claudia Arias has developed a technology to print lightweight electronic circuits and devices onto thin films.
Researcher Seeks to Starve Cancer of Nutrients
Roberto Zoncu investigates cellular energy flux. In researching how cells sense their own nutrients, Zoncu has found that a particular enzyme plays a vital role in making sure that a cell has the proper balance of nutrients and energy.
Tracking Cancer’s Advance in 3D
Sanjay Kumar adapts bioengineering strategies for studies in 3D cell environments to reveal how and why cancer cells invade the way they do.
Fishing for a Cure
Scott Baraban is collaborating with Berkeley researchers to find cures for childhood epilepsies.
Can New Understanding Avert Tragedy?
Solomon Hsiang's research provides a “ground–level” view of climate’s current and likely future role in such social stresses as child mortality, crime and social upheaval.
On Memory’s Trail
Ehud Isacoff and his colleagues explore the brain at several levels critical to ultimately understand how memories form and what can threaten their demise. He is the Director of Berkeley’s Helen Wills Neuroscience Institute.
Crispr Goes Global
Jennifer Doudna and her colleagues showed that CRISPR/Cas9, can be used with great precision to selectively disable or add several genes at once in human cells, offering a potent new tool to understand and treat complex genetic diseases.
Making Sense of Big Data
Ben Recht was recently honored by the White House with a Presidential Early Career Award for Scientists and Engineers, recognizing some of the most promising young researchers.
Using Carbon to Control the Light
Feng Wang is studying how electrical fields modulate the optical properties of a number of materials. The flip of a light switch – a nano-scale light switch – may some day dramatically boost the speed of data transmission, from streaming movies to accelerating the most data-intense computation.
How to Starve Out the Enemy
Mary Wildermuth is developing plant breeding strategies that can weaken the effects of powdery mildew. If not controlled, powdery mildew is a fast spreading fungus that can cause billions of dollars of crop damage in California.
Seizing Control of Brain Seizures
Daniela Kaufer made a startling discovery about the effect of psychological stress on the brain a few years after serving in the Israeli army during the first Gulf War.
“Ballistic transport ” – it sounds like a blast into the future
Felix Fischer and fellow researchers are fabricating strips of carbon only one-atom thick and less than 15 atoms wide, the aim is to create molecular-scale “wires” capable of carrying information thousands of times faster than is possible today.
Pinning down malevolent cancer cells
Lydia Sohn is developing a new technique based on microtechnology to distinguish between different types of circulating tumor cells also known as CTC’s . She hopes this more sensitive approach will help clinicians learn which CTC’s are most prone to lead to metastasis.
Scrutinizing Space Storms for a Calmer Life on Earth
Thomas Immel and his team at the Space Sciences Lab will design, build and operate two instruments and oversee development of two others to be loaded on a solar-powered satellite for a two-year science mission tentatively set to launch in 2017.
Packing Power
Tanja Cuk is testing how to optimize new devices for both power delivery and energy storage. Her focus is an alternative to conventional batteries, called a “supercapacitor,” which could deliver more power than current batteries.
Creating a New Trail to Solve an Old Problem
Ants normally distinguish friend from foe by detecting colony-specific molecules called pheromones that coat their bodies. Neil Tsutsui has identified the recognition pheromones and other chemical signals, and has shown in experiments that the ants’ behavior can be tweaked by exposing them to identical, environmentally harmless synthetic pheromones.
Wresting New Tricks From a Python: Fernando Perez Wins 2012 Award for the Advancement of Free Software
In 2001 when Fernando Pérez was still a graduate student in particle physics, he kept bumping into walls with a popular programming language he was using called Python, as he tried to analyze an elusive theoretical phenomenon known as the quantum vacuum.
The Cell’s “Everywhere” Molecule
Michael Rape studies ubiqutins that form chains, “like pearls on a string,” he says. In 2008, his lab discovered a new member of this chain configuration and determined how an enzyme called Ube2S is able to assemble it inside cells. Without the Ube2S enzyme and the ubiquitin chain, he found, cells cannot divide. But with too much Ube2S – and too many ubiquitin chains – cell division runs out of control.
Beyond Genomics - Mining the Proteome
Lab tests that detect prostate cancer can’t reveal if the cancer poses a real risk. It looks for elevated levels of a protein called PSA, but about 80 percent of cancers that generate high PSA levels grow so slowly and may never need treatment. New research by Amy Herr points the way to a much more refined assessment of proteins and the promise of better diagnosis and treatment of a range of diseases.
Mind Over Matter
It still sounds futuristic, but the time is approaching when people paralyzed by stroke or spinal cord injury will be able to regain the experience of movement. Neuroengineer Jose Carmena and bioengineer Michel Maharbiz have joined forces in a project supported by the Bakar Fellows Program to move this technology from the laboratory to the real world.