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Analysis in deep time: reveals the powerful
effects of climate change on ecosystems

~10-15 million years ago: strengthening of the North Pacific summer
high pressure led to persistent upwelling
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Coastal Upwelling — cold,
nutrient rich water surfaces
at the coast

San Francisco Bay







Diatom accumulation in the north Pacific:
proxy for biological productivity
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Oil Fields of The Santa Maria Basin and
Adjacent Offshore Arcas, California
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How are species going to respond to
climate forcing?

* Die — how severe is current crisis?
— what controls extinction probability?

« Adapt  — how fast?
— how easily: what is genetic
potential for change?

« Migrate - if so, where to and why?
— (how design nature reserves?)

« Nada — the ability to weather the change

Different approaches
1) Historical records
2) Modeling
3) Experimental manipulation
4) Fossil record

In applying these approaches, what
else do we learn?

Long-term goal

Develop a general theory of the biotic
response to climate/global change




Climate Forcing: h
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evere are the projected changes
pared to the Ice Age changes?
Regional High Latitude Human
10°C/100 yrs. induced
Regalonal COZ
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Regional
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warm period
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' Little Ice Age
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Jackson, S.T. and J.T. Overpeck 2000. Paleobiology




Three differences between now and the
emergence from the last Ice Age:
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1) Biota has not experienced both the high rates and
magnitudes of CO, increase in the recent past.

2) CO, is increasing now; in the Ice Ages it dropped.
3) Human pressure is much more intense.

Jackson, S.T. and J.T. Overpeck 2000. Paleobiology

How are species going to respond to
climate forcing?

* Die — how severe is current crisis?
— what controls extinction probability?

« Adapt - how fast?
— how easily: what is genetic potential
for change?

« Migrate - if so, where to and why?
— (how design nature reserves?)

« Nada — the ability to weather the change




Marine Genera

Are we in a 6th Percent Extinction
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Are we in a 6" mass extinction? By magnitude, NO.
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How are species going to respond to
climate forcing?

* Die — how severe is current crisis?
— what controls extinction probability?

« Adapt - how fast?
— how easily: what is genetic potential
for change?

« Migrate - if so, where to and why?
— (how design nature reserves?)

« Nada — the ability to weather the change

Fastest Adaptation — human timescales

The cultivation of crop plants, animal stocks,
evolution of drug-resistant pests, shows that
evolution can go very fast. Speed is a function
of generation time and population size.

But, typically we don’t know what aspects of
biology can adapt rapidly until selection is
applied.

However, genomic data are beginning to reveal
the components of the genome that are able to
respond to selection.

© Gregory G. and Mary Beth
Dimijian




Adaptation — on historical timescales

Glacial retreat created a Marine sticklebacks
new rivers; sticklebacks
invaded, typically with the

loss of their spines ... oo o Bum o
y . Thymus Iiillrg(é Neuromast Pitx1 OI!::)clttory

b Freshwater sticklebacks

Turns out this is easy to
do genetically — all you

have to do is damage one
genetic control element

ymus Hind- Neuromast Pitx1 Olfactory
limb pit

@ Regulatory element
Gene
r> Gene expression

In fossil record can measure rate of change:
adaptive change 50% complete in ~1,000 years
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Adaptation — on geological timescales

“‘Ardi” is
4.4 million
years old:
the long
road to
Homo
sapiens

Tim White (and colleagues), UC Berkeley

Adaptation — on geological timescales

Science
. “Ardi” is

Most adaptive change involves 4;;2!2?
altering a complex genetic }[/he long ’
4 architecture — so innovation is very road to
i slow ... Homo
sapiens

Tim White (and colleagues), UC Berkeley




How are species going to respond to
climate forcing?

* Die — how severe is current crisis?
— what controls extinction probability?

« Adapt - how fast?

— how easily: what is genetic potential
for change?

« Migrate - if so, where to and why?
— (how design nature reserves?)

« Nada — the ability to weather the change

How have species ranges changed in ~80 years?
Grinnell resurvey project historical: 1914-1920
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C. Moritz et al., Science 322, 261-264 (2008)




Changes in elevational range in ~80 years
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Inferring future geographic ranges:
Ecological Niche Modeling

Current Species Range

Credit: Jenny McGuire




Inferring future geographic ranges:
Ecological Niche Modeling

Modern Precipitation

Current Species Range

L L —

Modern Temperature

Credit: Jenny McGuire

Inferring future geographic ranges:
Ecological Niche Modeling

Modern Precipitation

Realized Niche Space

Climate variable 2
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Credit: Jenny McGuire




Inferring future geographic ranges:
Ecological Niche Modeling

Climate
Reconstructions

Realized Niche Space

Climate variable 2

Climate variable |

Credit: Jenny McGuire

Inferring future geographic ranges:
Ecological Niche Modeling
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increasing severity of clim ate change

Future Range

Lemmon's Ceanothus
Ceanothus lemmonii o L )
Less sensitive simulation Less sensitive simulation  More sensitive simulation  More sensitive simulation
Higher emissions

Current Range Lower emissions Higher emissions Lower emissions

. Currentrange O Herbarium specimens . Future range [] Future range (pending dispersal)

Credit: David Ackerly (UC Berkeley)

How does climate forcing effect biology?
(first generation models, incl. ENM)

Climate Forcing




How does climate forcing effect biology?
(second generation models — feedbacks; adding in the biology)

Climate Forcing
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What is hidden from view?

1) Biotic interactions

2) Biotic-climate
feedbacks

3) Evolutionary and
genomic potential

4) Evolutionary history

How test predictions of Ecological
Niche Modeling (ENM)?

1)Use climate models to retrodict past

climate.
2)Use ENM to retrodict past distribution.

3)Test with the fossil record.

(This work has only just begun)




Using the fossil record to test range shifts: ranges
inferred Ecological Niche Modeling

Geographic distributions during the last glacial maximum
(~21,000 years ago) inferred with Ecological Niche Modeling
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77 W Ecological Niche

E. Waltari, R. Hijmans, A. T. Peterson, A. Nyari, S. Perkins, R. Guralnick, 200




Fossil geographic range during the last glacial maximum

does not match the Ecological Niche Modeling!
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FERIIEN * [ Ecological Niche
Davis, McGuire & Orcutt, In

preparation

How do organisms respond to climate forcing?

Can’t treat species as
individualistic particles: a
major challenge is
determining how species
interactions affect the
responses of individual
species.

How do ecosystems respond to
climate forcing?




To what extent
are communities
locked together?

Test with the fossil
record: ~14,000
years ago there

was an extensive
forest type not
seen today

Ecosystems can | e i
be ephemeral ] Bl voosrons [ souresstrores
. Tundra Deciduous Forest . No Analog

- Forest Tundra D Aspen Parkland D No Data
. Boreal Forest . Prairie

Jackson, S.T. and J.T. Overpeck 2000.
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Nitrogen-fed grasses choke
out the wildflowers: species
interactions can be
dominant!
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How did the
California condor
survive the end ice-
age megafaunal
extinction?

Ecosystem—Climate Feedbacks




Retreat of N. American Ice Sheet

Models with rock and silt surface
predict too slow a retreat
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Credit: John Harte (UC Berkeley)

Retreat of N. American Ice Sheet

Models with Spruce trees
predict correct retreat rate
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Fossil pollen: show spruce trees lived up against
the ice until at least 9 rka.

Last Glacial
Maximum 12 rka
TN T O
R %

Jackson, S.T. and J.T. Overpeck 2000. Paleobiology

Within-biome Albedo Feedback: climate-induced change in
species composition can alter summer surface albedo
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Forbs Sagebrush

A 20% change in regional plant cover will have an
effect on local summertime climate that is
comparable to 2 x CO, forcing

Credit: John Harte (UC Berkeley)




Take Home Messages

1) We are in the discovery phase
of determining the factors and
feedbacks that will determine
the fate of species and
ecosystems due to climate

forcing.

2) Feedbacks operate over many
temporal scales and between
the phenotype, the genotype,
evolutionary history, geography,
and the climate itself.
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