The Velocity of Climate Change:
2010

Chris Field
Carnegie Institution: Department of Global Ecology
www.global-ecology.org
Year 2060: The search for a breakthrough technology to solve climate change continues.

It's a time machine we hope will take us back 50 years when we should have put a price on carbon.

We better hurry!

No! That's the great thing about this technology!
Article 2 of the UNFCCC

The ultimate objective of this Convention and any related legal instruments that the Conference of the Parties may adopt is to achieve, in accordance with the relevant provisions of the Convention, stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. Such a level should be achieved within a time frame sufficient to allow ecosystems to adapt naturally to climate change, to ensure that food production is not threatened and to enable economic development to proceed in a sustainable manner.
Article 2 of the UNFCCC

The ultimate objective of this Convention and any related legal instruments that the Conference of the Parties may adopt is to achieve, in accordance with the relevant provisions of the Convention, stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. Such a level should be achieved within a time frame sufficient to allow ecosystems to adapt naturally to climate change, to ensure that food production is not threatened and to enable economic development to proceed in a sustainable manner.
Article 2 of the UNFCCC

The ultimate objective of this Convention and any related legal instruments that the Conference of the Parties may adopt is to achieve, in accordance with the relevant provisions of the Convention, stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. Such a level should be achieved within a time frame sufficient to allow ecosystems to adapt naturally to climate change, to ensure that food production is not threatened and to enable economic development to proceed in a sustainable manner.
Risk = probability x consequence

- Loaded dice
- Car driving toward a cliff in the fog
- Dumping nails on the road of life
The velocity of climate change

• The rate of the climate changes
• The history of understanding climate change
• The velocity required for ecosystem and societal responses – adaptation
• Commitments to future climate change
 – Inertia
 – Permanence
 – Infrastructure
• The pace of human responses
“Warming of the climate system is unequivocal”

Global Land–Ocean Temperature Index

Black: annual mean, global met stations
Red: 5-year running mean, global met stations

NASA Goddard Institute for Space Studies, updated through 2009
Fire in the west

- Increase in area burned annually for each 1°C increase in temperature
- An exceedingly sensitive system

National Research Council, 2010, Climate Stabilization Targets
Risk of extreme events

Alcamo et al. 2007 IPCC WGII
Risk of extreme events

Alcamo et al. 2007 IPCC WGII
XXXI. On the Influence of Carbonic Acid in the Air upon the Temperature of the Ground. By Prof. Svante Arrhenius.
Climate sensitivity: Uncertainty in a key parameter

IPCC most likely value

IPCC 2007 Global Climate Models
IPCC 2007 'Likely' Range (>66%)

Revised best estimate

Higher values cannot be excluded

Carolyn Snyder thesis, Stanford, 2010
Decades of knowing...

We "will modify the heat balance of the atmosphere to such an extent that marked changes in climate . . . could occur“

1965: Environmental Pollution Board of the President's Science Advisory Committee.

"This generation has altered the composition of the atmosphere on a global scale through . . . a steady increase in carbon dioxide from the burning of fossil fuels.“

February 1965, President Lyndon B. Johnson

"If carbon dioxide continues to increase, [we] find no reason to doubt that climate changes will result, and no reason to believe that these changes will be negligible. “

National Academy of Science (Charney Report), 1979
\frac{^{\circ}/\text{yr}}{^{\circ}/\text{km}} = (\text{km/yr})

Loarie et al. Nature 2009
Permanent climate change

Matthews and Caldeira 2007 GRL
Emissions commitments from existing infrastructure

Davis et al. Science, 2010
Emissions commitments from existing infrastructure

Davis et al. Science, 2010
Fig. 2 A Regional emissions commitment from existing energy and transportation infrastructure (A) and normalized by regional population (B).

By country

Normalized for population

Davis et al. Science, 2010
Photo: Thames River Barrier Navigational Control
Delay?

- Avoid unnecessary expenditures
- Allow natural progress with technology development
- Start from a position of greater wealth
Questionable economics of rapid emissions reduction

Wigley et al. Nature 1996
Questionable economics of rapid emissions reduction

Wigley et al. Nature 1996
Delay?

- Avoid unnecessary expenditures
- Allow natural progress with technology development
- Start from a position of greater wealth

Clarke et al. Energy Economics, 2009
The implications of delaying action

<table>
<thead>
<tr>
<th>Model</th>
<th>650 CO2-e (Full Not-to-exceed)</th>
<th></th>
<th>550 CO2-e (Full Not-to-exceed)</th>
<th></th>
<th>450 CO2-e (Delay Not-to-exceed)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Overshoot</td>
<td></td>
<td>Overshoot</td>
<td></td>
<td>Overshoot</td>
<td></td>
</tr>
<tr>
<td>1 ETSAP-TIAM</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2 FUND</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3 GTEM</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4 IMAGE</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5 IMAGE-BECS</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>6 MERGE Optimistic</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>7 MERGE Pessimistic</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>8 MESSAGE</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>9 MESSAGE-NoBECS</td>
<td>+</td>
<td>N/A</td>
<td>+</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>10 MiniCAM-Base</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>11 MiniCAM-LoTech</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>12 POLES</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>13 SGM</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>14 WITCH</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

The “+” means that the team was able to produce the scenario; darkened cells with an “X” mean that the team was not able to produce the scenario. “N/A” means that the scenario was not attempted with the given model or model version.

Clarke et al. Energy Economics, 2009
Is the technology available?

Humanity already possesses the fundamental scientific, technical, and industrial know-how to solve the carbon and climate problem for the next half-century.

Pacala & Socolow, Science, 2004
Size of the challenge

- Global energy use \(\sim 15 \text{ TW} \ (15 \times 10^{12} \text{ W}) \)
- Global economic growth \(\sim 3\% \ \text{yr}^{-1} \)
- 3\% of 15 TW = 450 GW
 - 450 new big powerplants (\(\sim 1/\text{day} \))

- Past intensity improvements \(\sim 1.5\% \ \text{yr}^{-1} \)
 - 225 new big powerplants (\(\sim 0.5/\text{day} \))
Cumulative climate-change impacts

Time

Technology diffusion
Technologies
Agreements
Recognition
Intrinsic goal

Human-system inertia

"Desired" impacts
The choice is ours -

“The picture’s pretty bleak, gentlemen.... The world’s climates are changing, the mammals are taking over, and we all have a brain about the size of a walnut.”

Gary Larson, 1985
With 25 years of progress...

Patrick Chapatte, 2010
The velocity of climate change

- Climate changes persist many centuries
- Climate changes alter risk profiles
 - 100% certainty is a hopeless target
- Developing solutions takes time
- Artificial controversy
 - Costs time and opportunity
 - Lets risks and damages accumulate
 - Postpones co-benefits
 - Jeopardizes leadership opportunities
USA Today: What if it's a big hoax and we create a better world for nothing?

- Energy independence
- Preserve rainforests
- Sustainability
- Green jobs
- Livable cities
- Renewables
- Clean water, air
- Healthy children
- Etc. Etc.
Thanks to:

• Carolyn Synder: Climate sensitivity from paleo records
• Bill Anderegg: Sudden Aspen Decline
• Scott Loarie: The velocity of climate change
• Ken Caldeira: Permanence of climate change and Emissions commitments from existing infrastructure

• Steve Schneider (1945-2010)
IPCC procedures

- Hundreds of top scientists
- Comprehensive assessment
- Multi-stage, broad-based, monitored review
- Plenary approval line-by-line, by governments
IPCC reasons for concern

• Schneider et al, Chapter 19, WG2, AR4
 – Risks to unique and threatened systems
 – Risks of extreme weather events
 – Distribution of impacts
 – Aggregate impacts
 – Risks of large-scale discontinuities
Smith et al. PNAS 2009

Risks to Unique & Threatened Systems
Risks of Extreme Weather Events
Distribution of Impacts
Aggregate Impacts
Risks of Large-scale Discontinuities

Updated Reasons for Concern, 2009

Increase in global mean temperature above 1990 level

-0.6 to 0

Risks to Many
Increase
Negative for Most Regions
Negative for Some Regions; Positive for Others
Positive or Negative Market Impacts; Majority of People Adversely Affected
Low

High

5 to 0

5

4

3

2

1

0

-0.6

Smith et al. PNAS 2009
Errors in the 2007 IPCC report

- WGII – Himalayan glaciers
- WGII – Netherlands sea level

AR4, WGII, ch 10, p. 493. Glaciers in the Himalaya are receding faster than in any other part of the world (see Table 10.9) and, if the present rate continues, the likelihood of them disappearing by the year 2035 and perhaps sooner is very high if the Earth keeps warming at the current rate.

AR4, WGII, ch 12, p. 547. The Netherlands is an example of a country highly susceptible to both sea-level rise and river flooding because 55% of its territory is below sea level where 60% of its population lives and 65% of its Gross National Product (GNP) is produced.
Climategate

• No problems with any of the science.

• None.
Are the researchers in it for the money?

“Is it any wonder that those who benefit the most from continuing to do nothing emphasize the controversy among scientists and the need for continued research?”

Values

• Present versus future
• Aggregate good versus distributional equity
• Easy versus difficult to monetize
• Human versus non-human stakeholders
• Sensitivity to low-probability, high consequence events (risk aversion)
The velocity of climate change

• Solutions take time
 – Science
 – Development
 – Scaling-up / industrialization
 – Scaling up / policy landscape
 – Scaling up / global challenges
 – Avoiding early retirement costs

Energy sources, efficiency, and adaptation change the world incrementally and quantitatively.
Projected growth in energy demand 2004-2030

EIA 2006
Risk of extreme heat

Battisti and Naylor Science 2009 (A1B scenario, 23 Climate models from IPCC AR4)
The earliest effects of humans on climate?

Illustration by Tim O’Brien
For article by Adam Wolf
Stanford Magazine, 2008

Dan L Perlman, EcoLibrary.org
Direct forcing of climate

- Albedo: fraction of sunlight reflected
 - Grassland: ~20%
 - Deciduous forest: ~ 15%
 - Conifer forest: ~ 10%
 - Snow: ~90%

Early human climate changes?

Doughty et al. Geophysical Research Letters, 2010
Climate leverage from early hunting

Doughty et al. Geophysical Research Letters, 2010
Expertise in climate science

908 researchers total
Number of Pubs
Unconvinced = 2% of top 50
3% of top 100
Unconvinced mean = 60 climate pubs
Convinced mean = 119 climate pubs

Anderegg et al. 2010 PNAS