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Article 2 of the UNFCCC

The ultimate objective of this Convention and any
related legal instruments that the Conference of
the Parties may adopt is to achieve, in
accordance with the relevant provisions of the
Convention, stabilization of greenhouse gas
concentrations in the atmosphere at a level that
would prevent dangerous anthropogenic
interference with the climate system. Such a
level should be achieved within a time frame
sufficient to allow ecosystems to adapt naturally
to climate change, to ensure that food production
is not threatened and to enable economic
development to proceed in a sustainable manner.
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Article 2 of the UNFCCC

within a time frame
sufficient to allow ecosystems to adapt naturally
to climate change, to ensure that food production
is not threatened and to enable economic
development to proceed in a sustainable manner.



Risk = probability x consequence

« Loaded dice
« Car driving toward a cliff in the fog

 Dumping nails on the road of life



The velocity of climate change

ne rate of the climate changes

T
The history of understanding climate
change

T

ne velocity required for ecosystem and
societal responses — adaptation

Commitments to future climate change
— Inertia

— Permanence

— Infrastructure

The pace of human responses




“Warming of the climate system is unequivocal”

Global Land—Ocean Temperature Index
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MuLni-MobDEL AVERAGES AND AsSESSED RANGES FOR SURFACE WARMING
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Fire in the
west

« Increase in area
burned annually for
each 1°C increase in
temperature

* An exceedingly
sensitive system

National Research Council, 2010, Climate Stabilization Targets
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Climate sensitivity:
Uncertainty in a key parameter
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Decades of knowing...

We "will modify the heat balance of the atmosphere to such
an extent that marked changes in climate . . . could occur®

1965: Environmental Pollution Board of the President's
Science Advisory Committee.

"This generation has altered the composition of the
atmosphere on a global scale through . . . a steady increase in
carbon dioxide from the burning of fossil fuels."

February 1965, President Lyndon B. Johnson

"If carbon dioxide continues to increase, [we] find no reason
to doubt that climate changes will result, and no reason to
believe that these changes will be negligible.™

National Academy of Science (Charney Report), 1979



(°/yr)/(°/km) = (km/yr)

Loarie et al. Nature 2009
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Seguoiadendron gigantea
Taxodiaceae
Gerald D, Carr
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Permanent climate change
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Emissions commitments from existing

infrastructure
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Emissions commitments from existing
infrastructure
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Fig. 2 A Regional emissions commitment from existing energy and transportation infrastructure (A)
and normalized by regional population (B).
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Delay?

« Avoid unnecessary expenditures

« Allow natural progress with technology
development

« Start from a position of greater wealth



Questionable economics of rapid
emissions reduction
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Questionable economics of rapid
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Delay?

« Avoid unnecessary expenditures

« Allow natural progress with technology
development

« Start from a position of greater wealth

Group 1: Annex 1
{minus Russia)

Group 2: BRICS (Brazil,
Russia, India, China)

V.

Group 3: Remaining Transition
Countries

2012 2030 2050 2070

Clarke et al. Energy Economics, 2009



The

implications of delaying action

mot atempted with the given model of model version.

Clarke et al. Energy Economics, 2009
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Is the technology available?
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Size of the challenge

Global energy use ~ 15 TW (15 x 1012 W)
Global economic growth ~3% yr-1

3% of 15 TW = 450 GW
— 450 new big powerplants (~ 1/day)

Past intensity improvements ~1.5% yr-!
— 225 new big powerplants (~ 0.5/day)



Cumulative climate-change impacts
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Cumulative climate-change impacts
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Cumulative climate-change impacts

Agreements
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Cumulative climate-change impacts
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Cumulative climate-change impacts

Technology diffusion
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Cumulative climate-change impacts

Technology diffusion
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Cumulative climate-change impacts

’
’
’
’
r
”
P 4
4
'
”
’f
I e
2"
Technology diffusion
Technologies Actual impacts
Agreements
Recognition — N~

Intrinsic goal

-

\_/—Y—\J

Human-system
inertia

Land and ocean
system inertia

"Desired" impacts

Time ——




The choice is ours -

“The picture’s pretty
bleak, gentlemen....
The world’s climates
are changing, the
mammals are taking
over, and we all
have a brain about
the size of a
walnut.”

Gary Larson, 1985




With 25 years

, p
LHAffaTTE
Ink| Herald Tribune

Patrick Chapatte, 2010



The velocity of climate change

Climate changes persist many centuries

Climate changes alter risk profiles
— 100% certainty is a hopeless target

Developing solutions takes time

Artificial controversy

— Costs time and opportunity

— Lets risks and damages accumulate
— Postpones co-benefits

— Jeopardizes leadership opportunities
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Thanks to:

Carolyn Synder: Climate sensitivity from paleo
records

Bill Anderegg: Sudden Aspen Decline
Scott Loarie: The velocity of climate change

Ken Caldeira: Permanence of climate change and
Emissions commitments from existing
infrastructure

Steve Schneider (1945-2010)
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IPCC procedures

Hundreds of top scientists
Comprehensive assessment
Multi-stage, broad-based, monitored review

Plenary approval line-by-line, by

governments

T+
INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE \\N®/




IPCC reasons for concern
« Schneider et al, Chapter 19, WG2, AR4

— Risks to unique and threatened systems
— Risks of extreme weather events

— Distribution of impacts

— Aggregate impacts

— Risks of large-scale discontinuities



Negative
for Some
Regions;
Positive
for
Others

Increase

Increase in global mean temperature above 1990 level
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Positive or

Negative
Market
Impacts;
Majority
of People
Adversely
Affected

Updated Reasons
for Concern, 2009



Errors in the 2007 IPCC report

 WGII - Himalayan glaciers
« WGII - Netherlands sea level

AR4, WGII, ch 10, p. 493. Glaciers in
the Himalaya are receding faster than

in any other part of the world (see AR4, WGII, ch 12, p. 547. The
Table 10.9) and, if the present rate Netherlands is an example of a
continues, the likelihood of them country highly susceptible to both
disappearing by the year 2035 and sea-level rise and river flooding
perhaps sooner is very high if the because 55% of its territory is
Earth keeps warming at the current below sea level where 60% of its
rate. population lives and 65% of its

Gross National Product (GNP) is
produced.



Climategate

 No problems with any of the science.

* None.



Are the researchers in it for the
money?

“Is it any wonder that those who benefit the
most from continuing to do nothing
emphasize the controversy among
scientists and the need for continued

research?”

Giere R, Bickle J, Mauldin R. 1991. Understanding Scientific Reasoning. Holt,
Rinehart, and Winston.



Values

Present versus future

Aggregate good versus distributional
equity

Easy versus difficult to monetize
Human versus non-human stakeholders

Sensitivity to low-probability, high
consequence events (risk aversion)



The velocity of climate change

« Solutions take time
— Science
— Development
— Scaling-up / industrialization
— Scaling up / policy landscape
— Scaling up / global challenges
— Avoiding early retirement costs

Energy sources, efficiency, and adaptation change
the world incrementally and quantitatively.






Projected growth in energy demand
2004-2030
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Risk of extreme heat

percent (%)

0 10 90 70 90 100

Battisti and Naylor Science 2009 (A1B scenario, 23 Climate models from IPCC AR4)
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Direct forcing of climate

I Reflected sunlight
B Evaporation
B Transmitted heat

« Albedo: fraction of sunlight reflected
— Grassland: ~20%
— Deciduous forest: ~ 15%
— Conifer forest: ~ 10%

— Snow: ~90% Jackson et al. Env. Res. Let. 2008



Early human climate changes?

40 100
Betula pollan
] Mammoth fossil samples

Human occupation

Mammoth fossil samples
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Doughty et al. Geophysical Research Letters, 2010

% Betula tree pollen



Climate leverage from early hunting
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Expertise in climate science

~2% of top 50
3% of top 100,?
mean = 6Qvg_lmate pubs

Anderegg et al. 2010 PNAS



